45 research outputs found

    Multimodality Imaging of Abnormal Vascular Perfusion and Morphology in Preclinical 9L Gliosarcoma Model

    Get PDF
    This study demonstrates that a dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) perfusion parameter may indicate vascular abnormality in a brain tumor model and reflects an effect of dexamethasone treatment. In addition, X-ray computed tomography (CT) measurements of vascular tortuosity and tissue markers of vascular morphology were performed to investigate the underpinnings of tumor response to dexamethasone.One cohort of Fisher 344 rats (N = 13), inoculated intracerebrally with 9L gliosarcoma cells, was treated with dexamethasone (i.p. 3 mg/kg/day) for five consecutive days, and another cohort (N = 11) was treated with equal volume of saline. Longitudinal DSC-MRI studies were performed at the first (baseline), third and fifth day of treatments. Relative cerebral blood volume (rCBV) was significantly reduced on the third day of dexamethasone treatment (0.65 ± .13) as compared to the fifth day during treatment (1.26 ±.19, p < 0.05). In saline treated rats, relative CBV gradually increased during treatment (0.89 ±.13, 1.00 ± .21, 1.13 ± .23) with no significant difference on the third day of treatment (p>0.05). In separate serial studies, microfocal X-ray CT of ex vivo brain specimens (N = 9) and immunohistochemistry for endothelial cell marker anti-CD31 (N = 8) were performed. Vascular morphology of ex vivo rat brains from micro-CT analysis showed hypervascular characteristics in tumors, and both vessel density (41.32 ± 2.34 branches/mm(3), p<0.001) and vessel tortuosity (p<0.05) were significantly reduced in tumors of rats treated with dexamethasone compared to saline (74.29 ± 3.51 branches/mm(3)). The vascular architecture of rat brain tissue was examined with anti-CD31 antibody, and dexamethasone treated tumor regions showed reduced vessel area (16.45 ± 1.36 µm(2)) as compared to saline treated tumor regions (30.83 ± 4.31 µm(2), p<0.001) and non-tumor regions (22.80 ± 1.11 µm(2), p<0.01).Increased vascular density and tortuosity are culprit to abnormal perfusion, which is transiently reduced during dexamethasone treatment

    Low Doses of Ionizing Radiation Promote Tumor Growth and Metastasis by Enhancing Angiogenesis

    Get PDF
    Radiotherapy is a widely used treatment option in cancer. However, recent evidence suggests that doses of ionizing radiation (IR) delivered inside the tumor target volume, during fractionated radiotherapy, can promote tumor invasion and metastasis. Furthermore, the tissues that surround the tumor area are also exposed to low doses of IR that are lower than those delivered inside the tumor mass, because external radiotherapy is delivered to the tumor through multiple radiation beams, in order to prevent damage of organs at risk. The biological effects of these low doses of IR on the healthy tissue surrounding the tumor area, and in particular on the vasculature remain largely to be determined. We found that doses of IR lower or equal to 0.8 Gy enhance endothelial cell migration without impinging on cell proliferation or survival. Moreover, we show that low-dose IR induces a rapid phosphorylation of several endothelial cell proteins, including the Vascular Endothelial Growth Factor (VEGF) Receptor-2 and induces VEGF production in hypoxia mimicking conditions. By activating the VEGF Receptor-2, low-dose IR enhances endothelial cell migration and prevents endothelial cell death promoted by an anti-angiogenic drug, bevacizumab. In addition, we observed that low-dose IR accelerates embryonic angiogenic sprouting during zebrafish development and promotes adult angiogenesis during zebrafish fin regeneration and in the murine Matrigel assay. Using murine experimental models of leukemia and orthotopic breast cancer, we show that low-dose IR promotes tumor growth and metastasis and that these effects were prevented by the administration of a VEGF receptor-tyrosine kinase inhibitor immediately before IR exposure. These findings demonstrate a new mechanism to the understanding of the potential pro-metastatic effect of IR and may provide a new rationale basis to the improvement of current radiotherapy protocols

    Angiostatin generating capacity and anti-tumour effects of D-penicillamine and plasminogen activators

    Get PDF
    BACKGROUND: Upregulation of endogenous angiostatin levels may constitute a novel anti-angiogenic, and therefore anti-tumor therapy. In vitro, angiostatin generation is a two-step process, starting with the conversion of plasminogen to plasmin by plasminogen activators (PAs). Next, plasmin excises angiostatin from other plasmin molecules, a process requiring a donor of a free sulfhydryl group. In previous studies, it has been demonstrated that administration of PA in combination with the free sulfhydryl donor (FSD) agents captopril or N-acetyl cysteine, resulted in angiostatin generation, and anti-angiogenic and anti-tumour activity in murine models. METHODS: In this study we have investigated the angiostatin generating capacities of several FSDs. D-penicillamine proved to be most efficient in supporting the conversion of plasminogen to angiostatin in vitro. Next, from the optimal concentrations of tPA and D-penicillamine in vitro, equivalent dosages were administered to healthy Balb/c mice to explore upregulation of circulating angiostatin levels. Finally, anti-tumor effects of treatment with tPA and D-penicillamine were determined in a human melanoma xenograft model. RESULTS: Surprisingly, we found that despite the superior angiostatin generating capacity of D-penicillamine in vitro, both in vivo angiostatin generation and anti-tumour effects of tPA/D-penicillamine treatment were impaired compared to our previous studies with tPA and captopril. CONCLUSION: Our results indicate that selecting the most appropriate free sulfhydryl donor for anti-angiogenic therapy in a (pre)clinical setting should be performed by in vivo rather than by in vitro studies. We conclude that D-penicillamine is not suitable for this type of therapy

    Phase II Trial of Concurrent Sunitinib and Image-Guided Radiotherapy for Oligometastases

    Get PDF
    BACKGROUND: Preclinical data suggest that sunitinib enhances the efficacy of radiotherapy. We tested the combination of sunitinib and hypofractionated image-guided radiotherapy (IGRT) in a cohort of patients with historically incurable distant metastases. METHODS: Twenty five patients with oligometastases, defined as 1-5 sites of active disease on whole body imaging, were enrolled in a phase II trial from 2/08 to 9/10. The most common tumor types treated were head and neck, liver, lung, kidney and prostate cancers. Patients were treated with the recommended phase II dose of 37.5 mg daily sunitinib (days 1-28) and IGRT 50 Gy (days 8-12 and 15-19). Maintenance sunitinib was used in 33% of patients. Median follow up was 17.5 months (range, 0.7 to 37.4 months). RESULTS: The 18-month local control, distant control, progression-free survival (PFS) and overall survival (OS) were 75%, 52%, 56% and 71%, respectively. At last follow-up, 11 (44%) patients were alive without evidence of disease, 7 (28%) were alive with distant metastases, 3 (12%) were dead from distant metastases, 3 (12%) were dead from comorbid illness, and 1 (4%) was dead from treatment-related toxicities. The incidence of acute grade ≥ 3 toxicities was 28%, most commonly myelosuppression, bleeding and abnormal liver function tests. CONCLUSIONS: Concurrent sunitinib and IGRT achieves major clinical responses in a subset of patients with oligometastases. TRIAL REGISTRATION: ClinicalTrials.gov NCT00463060

    Expression of NF-κB p50 in Tumor Stroma Limits the Control of Tumors by Radiation Therapy

    Get PDF
    Radiation therapy aims to kill cancer cells with a minimum of normal tissue toxicity. Dying cancer cells have been proposed to be a source of tumor antigens and may release endogenous immune adjuvants into the tumor environment. For these reasons, radiation therapy may be an effective modality to initiate new anti-tumor adaptive immune responses that can target residual disease and distant metastases. However, tumors engender an environment dominated by M2 differentiated tumor macrophages that support tumor invasion, metastases and escape from immune control. In this study, we demonstrate that following radiation therapy of tumors in mice, there is an influx of tumor macrophages that ultimately polarize towards immune suppression. We demonstrate using in vitro models that this polarization is mediated by transcriptional regulation by NFκB p50, and that in mice lacking NFκB p50, radiation therapy is more effective. We propose that despite the opportunity for increased antigen-specific adaptive immune responses, the intrinsic processes of repair following radiation therapy may limit the ability to control residual disease

    Role of novel targeted therapies in the clinic

    Get PDF
    The number and variety of novel, molecular-targeted agents offers realistic hope for significant advances in cancer treatment. The potential of these new treatment approaches is unquestionable, but the reality is something that only thorough clinical evaluation and experience can reveal. Clinical experience of targeted therapies is at an early stage but it is likely that we will have an increasing number of treatment options available to us in the near future. This manuscript explores our current understanding of molecular-targeted therapies and considers: What approach should be used? (single vs multitarget agents); When should they be administered? (identifying the optimal point for intervention); How should they be used? (monotherapy or combination therapy regimens); and Who should we be giving them to? (acknowledging the need for patient selection)

    PDZ domains and their binding partners: structure, specificity, and modification

    Get PDF
    PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes
    corecore